umyogyak SUN@RTI ANG DH~IR

wellcome to the my bog

Sabtu, 26 Maret 2011

Fungsi Invers

CARA MENENTUKAN SUATU GRAFIK MEMPUNYAI INVERS/TIDAK

1. Tarik sembarang garis sejajar sumbu x, bila memotong grafik hanya di satu titik, maka grafik tersebut mempunyai invers. Bila tidak demikian, maka grafik tersebut tidak mempunyai invers
2.
Diketahui f: R ® R
f(x) = 2x - 3

Tentukan f-1 (x) !

Jawab:

f one one onto
sehingga f mempunyai invers
misalkan y = image dari x
y = f(x)
y = 2x-3 (yang berarti x = f-1(y))
x = (y+3)/2
f-1(x) = (x+3)/2
3.
Diketahui f: A ® B
f(x) = (x - 2)/(x - 3)
dengan A = {R - {3}} dan B = {R - {-1}}
(baca: A adalah himpunan bilangan riil kecuali 33)

Tentukan f-1(x)

Jawab:

y = (x - 2)/(x - 3)
y(x - 3) = x - 2
yx - 3y = x - 2
x(y - 1) = 3y - 2
x = (3y - 2)/(y - 1) ® f-1(x) = (3x - 2)/(x - 1)


Anggap f : A ® B dan g : B ® C

Didapat fungsi baru (g o f) : A ® C
yang disebut komposisi fungsi dari f dan g
h = g o f
(g o f) (x) = g (f (x))
® yaitu dengan mengerjakan f(x) terlebih dahulu
ket : image f merupakan domain bagi g.
contoh:
1. f:A ® B; g:B ® C
(g o f)(a) = g (f(a)) = g(y) = t
(g o f)(b) = g (f(b)) = g(z) = r
(g o f)(c) = g (f(c)) = g(y) = t


2. f: R ® R ; f(x) = x²
g: R ® R ; g(x) = x + 3 R=riil

maka
(f o g)(x) = f(g(x)) = f(x+3) = (x+3)² = x² + 6x + 9
(g o f)(x) = g(f(x)) = g(x²) = x² + 3

Bila x=2, maka
(f o g)(2) = f(g(2)) = f(5) = 25
(g o f)(2) = g(f(2)) = g(4) = 7

3. Diketahui [rumus]
jika (f o g)(x) = x²
Tentukan g(x) !
jawab:
[rumus]
SIFAT
Bila f : A ® B; g : B ® C ; h : C ® D
maka
(f o g) ¹ (g o f) : tidak komutatif
(h o g) o f = h o (g o f) : asosiatif

Tidak ada komentar:

Posting Komentar